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Extra Practice Problems 11

Here's yet another batch of practice problems. If you'd like even more practice, please let us know
what topics you'd like more review on!

Problem One: Set Theory
Prove or disprove: there are sets A and B where ℘(A × B) = ℘(A) × ℘(B).

Problem Two: Induction
The well-ordering principle states that if S ⊆ ℕ and S ≠ Ø, then S contains an element n₀ that is less
than all other elements of S. There is a close connection between the well-ordering principle and the
principle of mathematical induction.

Suppose that P is some property such that

• P(0)

• ∀k ∈ ℕ. (P(k) → P(k+1))

Using the well-ordering principle,  but without using induction, prove that  P(n) holds for all  n ∈ ℕ.
This shows that if you believe the well-ordering principle is true, then you must also believe the
principle of mathematical induction.

Problem Three: Graphs
Let G = (V₁, E₁) and H = (V₂, E₂) be undirected graphs. The tensor product of G and H, denoted
G × H, is an undirected graph. G × H has as its set of nodes the set V₁ × V₂. The edges of G × H are
defined as follows: the edge {(u₁, v₁), (u₂, v₂)} is in G × H if {u₁, u₂} ∈ E₁ and {v₁, v₂} ∈ E₂.

Prove that χ(G × H) ≤ min{χ(G), χ(H)}.

Interestingly, the following question is an open problem: are there any undirected graphs G and H
for which χ(G × H) ≠ min{χ(G), χ(H)}? A conjecture called Hedetniemi's conjecture claims that the
answer is no, but no one knows for sure!
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Problem Four: First-Order Logic
Consider the following formula in first-order logic:

∀x ∈ ℝ. ∀y ∈ ℝ. (x < y → ∃p ∈ ℤ. ∃q ∈ ℤ. (q ≠ 0 ∧ x < p/q ∧ p/q < y))

This question explores this formula.

i. Translate this formula into plain English. As a hint, there's a very simple way of expressing
the concept described above.

ii. Rewrite this formula so that it doesn't use any universal quantifiers.

iii. Rewrite this formula so that it doesn't use any existential quantifiers.

iv. Rewrite this formula so that it doesn't use any implications.

v. Negate this formula and push the negations as deep as possible.

Problem Five: Binary Relations
Let R be a binary relation over a set A. For any set B ⊆ A, we can define the restriction of R to B,
denoted R|B , to be a binary relation over the set B defined as follows:

x R|B y    if    xRy.

In other words, the relation R|B behaves the same as R, but only on the elements of B.

i. Prove or disprove: if R is an equivalence relation over a set A and B is an arbitrary subset of
A, then R|B is an equivalence relation over B.

ii. Prove or disprove: if R is a strict order over a set A and B is an arbitrary subset of A, then
R|B is a strict order over B.

iii. Prove or disprove: there is a strict order R over a set A and a set B ⊆ A such that R|B is an
equivalence relation.

iv. Prove or disprove: there is an equivalence relation R over a set A and a set B ⊆ A such that
R|B is a strict order.
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Problem Six: Functions and Relations
(Midterm Exam, Spring 2015)

In this question, let A = {1, 2, 3, 4, 5}. Let f : A → A be an arbitrary function from A to A that we
know is not a surjection. We can then define a new binary relation ~f as follows: for any a, b ∈ A, we
say a ~f b if f(a) = b.  Notice that this relation depends on the particular non-surjective function f
that we pick; if we choose  f differently, we'll get back different relations. This question explores
what we can say with certainty about ~f knowing only that its domain and codomain are A and that it
is not a surjection.

Below are the six types of relations we explored over the course of this quarter. For each of the
types, determine which of the following is true:

• The relation ~f is  always a relation of the given type, regardless of which non-surjective
function f : A → A we pick.

• The relation ~f is never a relation of the given type, regardless of which non-surjective func-
tion f : A → A we pick.

• The relation ~f is  sometimes,  but not always a  relation of the given type, depending on
which particular non- surjective function f : A → A we pick.

Since these options are mutually exclusive, check only one box per row.  (Hint: Draw a lot of pic-
tures.)

~f is reflexive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is irreflexive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is symmetric ☐ Always ☐ Sometimes, but not always ☐ Never

~f is asymmetric ☐ Always ☐ Sometimes, but not always ☐ Never

~f is transitive ☐ Always ☐ Sometimes, but not always ☐ Never

~f is an equivalence
relation

☐ Always ☐ Sometimes, but not always ☐ Never

~f is a strict order ☐ Always ☐ Sometimes, but not always ☐ Never
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Problem Seven: The Pigeonhole Principle*

Let n be an odd natural number and consider the set S = {1, 2, 3, …, n}. A permutation of S is a bi-
jection σ : S → S. In other words, σ maps each element of S to some unique element of S and does
so in a way such that no two elements of S map to the same element.

Let σ be an arbitrary permutation of S. Prove that there is some r ∈ S such that r – σ(r) is even.

Problem Eight: DFAs, NFAs, and Regular Expressions
If w is a string, then wR represents the reversal of that string. For example, the reversal of “table” is
“elbat.” If L is a language, then LR is the language { wR | w ∈ L } consisting of all the reversals of the
strings in L.

It turns out that the regular languages are closed under reversal.

i. Give a construction that turns an NFA for a language L into an NFA for the language LR. No
proof is necessary.

ii. Give a construction that turns a regular expression for a language L into a regular expression
for the language LR. No proof is necessary.

Problem Nine: Nonregular Languages
Prove that the language { w ∈ {a, b}*   |   |w| ≡₃ 0 and the middle third of the characters in w con-
tains at least one a } is not regular.

Problem Ten: Context-Free Grammars
Let Σ = {(, )} and let L = { w ∈ Σ* | w is a string of balanced parentheses and w has an even num-
ber of open parentheses }. Write a CFG for L.

Problem Eleven: Turing Machines
In lecture, we designed a Turing machine that, given a string of 0s and 1s, puts them into ascending
order and then halts. The sorting algorithm we used worked by finding a copy of the substring 10,
reversing it, and repeating until no more copies of this substring exists. While this algorithm works,
it's not very efficient.

Design a TM that sorts a string of 0s and 1s and does so more efficiently than the machine from
class. By “more efficiently,” we mean that the TM you design should, on average, take many fewer
steps to complete than our TM.

* Adapted from http://www.cut-the-knot.org/do_you_know/pigeon.shtml.

http://www.cut-the-knot.org/do_you_know/pigeon.shtml
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Problem Twelve: R and RE Languages
(This problem is much easier to solve using the material from Wednesday, May 31st’s lecture.)

A function f : Σ* → Σ* is called a  computable function if it is possible to write a function com-
pute_f that takes in a string w and outputs f(w).

Given any computable function f and language L, let's define f[L] = { w ∈ Σ* | ∃x ∈ L. f(x) = w }.
In other words, f[L] is the set of strings formed by applying f to each string in L.

Prove that if L ∈ RE and f is a computable function, then f[L] ∈ RE.

Problem Thirteen: Impossible Problems
Prove that L = { ⟨M, N⟩ | M is a TM, N is a TM, and ℒ(M) = ℒ(N) } is not in R.


